Divisors on Division Algebras and Error Correcting Codes

نویسنده

  • Patrick J. Morandi
چکیده

Recall that a (linear) code is just a k-subspace C of k, where k is some finite field. The elements of C are referred to as codewords, and the dimension of the code, dim(C), is just the dimension of C as a k-space. The length of the code is the dimension of the ambient space k; that is, the length of C is n. The minimum distance, d(a, b) between two codewords a = (a1, . . . , an) and b = (b1, . . . , bn) is defined by d(a, b) = |{i | ai 6= bi}|, and the minimum distance of the code, d(C), is defined by d(C) = min{d(a, b) | a, b ∈ C, a 6= b}. The weight, w(a), of a codeword a = (a1, . . . , an) is defined by w(a) = |{i | ai 6= 0}|. The linearity of the code ensures that d(C) is also equal to min{w(a) | a ∈ C, a 6= 0}. ∗Supported in part by a grant from the N.S.F.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

ar X iv : 0 81 1 . 04 21 v 1 [ qu an t - ph ] 4 N ov 2 00 8 QUANTUM ERROR CORRECTION ON INFINITE - DIMENSIONAL HILBERT SPACES

We present a generalization of quantum error correction to infinite-dimensional Hilbert spaces. The generalization yields new classes of quantum error correcting codes that have no finite-dimensional counterparts. The error correction theory we develop begins with a shift of focus from states to algebras of observables. Standard subspace codes and subsystem codes are seen as the special case of...

متن کامل

An approach to fault detection and correction in design of systems using of Turbo ‎codes‎

We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...

متن کامل

Algebraic Geometry

5 Divisors 30 5.1 The Picard group . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2 Automorphisms of Pnk and of A n k . . . . . . . . . . . . . . . . 33 5.3 The degree of the divisor of a rational function on a projective curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.4 Bezout theorem for curves . . . . . . . . . . . . . . . . . . . . 36 5.5 Riemann–Roch theo...

متن کامل

Error-Correcting Codes and Phase Transitions

The theory of error-correcting codes is concerned with constructing codes that optimize simultaneously transmission rate and relative minimum distance. These conflicting requirements determine an asymptotic bound, which is a continuous curve in the space of parameters. The main goal of this paper is to relate the asymptotic bound to phase diagrams of quantum statistical mechanical systems. We f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000